Taschenrechner-Hilfekarten

Hilfekarten zur Bedienung des wissenschaftlichenTaschenrechners TI-30X Plus

  1. Bestimme den Funktionswert
  2. Quadratische Gleichung lösen

Foto: © Texas Instruments, Dallas, USA

Social-Media-Buttons:

Lernvideo: Beweis Satz des Pythagoras

Autor und Sprecher: Frank Schumann
Thema: Planimetrie
Gesamt-Playlist zum Thema: Planimetrie (Weiterleitung zu YouTube)

Was Du hier lernen kannst:

  • wie man den Satz des Pythagoras in der Wenn-Dann-Form formulieren kann
  • wie man den Satz des Pythagoras mithilfe ähnlicher Dreiecke beweisen kann
  • wie man die einzelnen Beweisschritte mittels eines Beweisbaumes ordnen kann
  • wie man den Satz des Pythagoras noch anders formulieren kann

Im Lernvideo wird der Satz des Pythagoras in der Wenn-Dann-Form vorgestellt und mittels ähnlicher Dreiecke bewiesen. Der Ablauf des Beweises wird strukturiert durch einzelne Beweisschritte, die in einem Beweisbaum dargestellt sind. Das Beweiskonzept im Ganzen wird durch den Beweisbaum transparent. Einzelne Animationen verstärken die Aussagekraft einzelner Beweisschritte. Am Ende des LV wird eine weit verbreitete Formulierung für den Satz präsentiert.

Die Idee: „Beweisbaum“ geht zurück auf Prof. Werner Walsch (siehe Wikipedia.ORG).

Der Beweisbaum aus dem Video kann hier als PDF herunter geladen werden:


Gesamtlaufzeit des Videos: 17:13 Minuten.
© Frank Schumann 2016

Social-Media-Buttons:

Lernvideo: Einen Term für b entdecken

Autor und Sprecher: Frank Schumann
Thema: Planimetrie
Gesamt-Playlist zum Thema: Planimetrie (Weiterleitung zu YouTube)

Was Du hier lernen kannst:

  • wie man nach dem Kongruenzsatz SsW und mithilfe des Thaleshalbkreises ein rechtwinkliges Dreieck eindeutig konstruieren kann
  • wie man mithilfe eines Funktionsgraphen den funktionalen Zusammenhang zwischen zwei Streckenlängen aufdecken kann
  • wie man einen Term zur Berechnung einer Seitenlänge eines rechtwinkligen Dreiecks aufstellen kann (ohne Beweis).

Im Lernvideo wird der Satz des Pythagoras motiviert durch die Aktion: Beschreibe für das rechtwinklige Dreieck ABC einen Term b=f(a), wenn die Hypotenuse gleich lang bleibt. Die Erkenntnis über den Term wird am Graphen von f induktiv gewonnen. Der Satz wird lediglich als Vermutung ausgesprochen und nicht bewiesen.


Gesamtlaufzeit des Videos: 08:00 Minuten.
© Frank Schumann 2016

Social-Media-Buttons: