Lernvideo: Beweis Satz des Pythagoras

Autor und Sprecher: Frank Schumann
Thema: Planimetrie
Gesamt-Playlist zum Thema: Planimetrie (Weiterleitung zu YouTube)

Was Du hier lernen kannst:

  • wie man den Satz des Pythagoras in der Wenn-Dann-Form formulieren kann
  • wie man den Satz des Pythagoras mithilfe ähnlicher Dreiecke beweisen kann
  • wie man die einzelnen Beweisschritte mittels eines Beweisbaumes ordnen kann
  • wie man den Satz des Pythagoras noch anders formulieren kann

Im Lernvideo wird der Satz des Pythagoras in der Wenn-Dann-Form vorgestellt und mittels ähnlicher Dreiecke bewiesen. Der Ablauf des Beweises wird strukturiert durch einzelne Beweisschritte, die in einem Beweisbaum dargestellt sind. Das Beweiskonzept im Ganzen wird durch den Beweisbaum transparent. Einzelne Animationen verstärken die Aussagekraft einzelner Beweisschritte. Am Ende des LV wird eine weit verbreitete Formulierung für den Satz präsentiert.

Die Idee: „Beweisbaum“ geht zurück auf Prof. Werner Walsch (siehe Wikipedia.ORG).

Der Beweisbaum aus dem Video kann hier als PDF herunter geladen werden:


Gesamtlaufzeit des Videos: 17:13 Minuten.
© Frank Schumann 2016

Social-Media-Buttons:

Informationen aus Sätzen verstehen lernen – Mein Aussagen – 1. Teil

Autorin: Ingeborg Löffler,
Herausgeber: Jens K. Carl & Frank Schumann

Reihe: In Mathe einfach besser …
Die erste Lerntechnik, die ich heute vorstellen möchte, richtet sich auf ein schülergerechtes Interpretieren von Sätzen und Regeln aus dem Mathematikunterricht der Mittelstufe und kann von Schülerinnen und Schülern in relativ kurzer Zeit unter Anleitung erlernt und selbstständig auch zuhause praktiziert werden. Durch spezielle Übungen, abgestimmt in drei Stufen, bekommt der Lernende einen weitaus stärkeren inhaltlichen Bezug zu den Sätzen als durch reines Auswendiglernen.

Teil 1:

  • Die Qualität eines Satzes
  • Mein Aussagen erster Stufe
  • Mein Aussagen zweiter Stufe
  • Individuelles Lernen und individueller Leistungsfortschritt

Artikel kostenfrei zum Herunterladen:

Zeitschrift: In Mathe einfach besser… Nr. 1/2005 Seiten 2-10.
Verlag: Schumanns Verlagshaus Wertheim 2005.

© Frank Schumann 2006 (vormals Schumanns Verlagshaus Wertheim)

Social-Media-Buttons: