Lernvideo: Extremwertaufgabe (ohne Nebenbedingungen)

Autor und Sprecher: Frank Schumann
Thema: Einführung in die Differenzialrechnung
Gesamt-Playlist zum Thema: Einführung in die Differenzialrechnung (Weiterleitung zu YouTube)

Was Sie hier lernen können:

  • woran man eine Extremwertaufgabe erkennen kann
  • wie man eine einfache Extremwertaufgabe (ohne Nebenbedingung) rechnerisch und graphisch lösen kann
  • wie man eine Extremwertaufgabe variieren kann.

Im Lernvideo wird eine einfache Extremwertaufgabe, ohne Nebenbedingung, in 4 Schritten rechnerisch gelöst. Animationen unterstützen die Anschauung zur Lösungsfindung.
Für das weitere Üben zum Lösen von Extremwertaufgaben wird die Ausgangsaufgabe variiert, indem der rechte Rand des Definitionsbereiches der Zielfunktion verändert wird. Dabei entstehen lokale Extrema, die in der Ausgangsaufgabe noch nicht existent waren.
Es wird empfohlen, zuvor das Lernvideo „Oben offene Schachtel“ anzuschauen.

Gesamtlaufzeit des Videos: 12:55 Minuten.
© Frank Schumann 2015

Lernvideo: Lokale Extrema und VZW-Kriterium

Autor und Sprecher: Frank Schumann
Thema: Einführung in die Differenzialrechnung
Gesamt-Playlist zum Thema: Einführung in die Differenzialrechnung (Weiterleitung zu YouTube)

Was Sie hier lernen können:

  • wie man mithilfe eines Satzes die Existenz und Art eines lokalen Extremums rechnerisch nachweisen kann.

Im Lernvideo werden der Satz vom Vorzeichenwechselkriterium (VZW-Kriterium) und seine Anwendung auf differenzierbare Funktionen zum Nachweis lokaler Extrema erläutert. Dabei werden Begriffe, wie Extremum, Extremstelle, lokales Maximum, lokales Minimum, Hoch- und Tiefpunkte in Anwendungen beschrieben.

Hierzu wird von mir die Mathematiksoftware Geogebra ab Verion 5 genutzt. Die Arbeitsblätter können hier herunter geladen werden:


Gesamtlaufzeit des Videos: 18:44 Minuten.
© Frank Schumann 2014

Lernvideo: Monotonie und Ableitung

Autor und Sprecher: Frank Schumann
Thema: Einführung in die Differenzialrechnung
Gesamt-Playlist zum Thema: Einführung in die Differenzialrechnung (Weiterleitung zu YouTube)

Was Sie hier lernen können:

  • einen Satz über den Zusammenhang von Monotonie einer Funktion und deren Ableitung in offenen Intervallen
  • wie man den Satz anwenden kann, um Monotonie-Untersuchungen durchzuführen.

Im Lernvideo wird ein Satz über den Zusammenhang: Monotonie und Ableitung in offenen Intervallen exemplarisch erarbeitet.

Hierzu wird von mir die Mathematiksoftware Geogebra ab Verion 5 genutzt. Die Arbeitsblätter können hier herunter geladen werden:


Gesamtlaufzeit des Videos: 15:40 Minuten.
© Frank Schumann 2014

Lernvideo: Oben offene Schachtel (3D)

Autor und Sprecher: Frank Schumann
Thema: Einführung in die Differenzialrechnung
Gesamt-Playlist zum Thema: Einführung in die Differenzialrechnung (Weiterleitung zu YouTube)

Was Sie hier lernen können:

  • den Aufbau einer Optimierungsaufgabe
  • die Definition: lokales Maximum einer Funktion
  • die Definition: globales Maximum einer Funktion.

Im Lernvideo wird eine Extremwertaufgabe – oben offene Schachtel – analysiert, eine Zielfunktion analytisch beschrieben und auf graphischem Wege gelöst. Dabei werden zwei zentrale Begriffe aus der Kurvendiskussion eingeführt: lokales und globales Maximum. Im Lernvideo wird darauf verwiesen, dass im bevorstehenden Unterricht Verfahren zur rechnerischen Bestimmung lokaler Extrema mittels Differenzialrechnung eingeführt werden.

Hierzu wird von mir die Mathematiksoftware Geogebra ab Verion 5 genutzt. Das Arbeitsblatt kann hier herunter geladen werden:


Gesamtlaufzeit des Videos: 16:18 Minuten.
© Frank Schumann 2014

Lernvideo: Potenzregel vermuten

Autor und Sprecher: Frank Schumann
Thema: Einführung in die Differenzialrechnung
Gesamt-Playlist zum Thema: Einführung in die Differenzialrechnung (Weiterleitung zu YouTube)

Was Sie hier lernen können:

  • wie man in GeoGebra eine Vermutung für eine Regel zur Ableitung einfacher Potenzfunktionen mit f(x)=x^n und n Element der Menge aller ganzen Zahlen finden kann.

Im Lernvideo wird die Potenzregel zur Ableitung von Potenzfunktionen mit ganzzahligem Exponenten induktiv gewonnen. Auf einen Beweis der Potenzregel wird verzichtet.

Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. Die Arbeitsblätter können hier herunter geladen werden:


Gesamtlaufzeit des Videos: 10:23 Minuten.
© Frank Schumann 2014

Lernvideo: Graphisch Ableiten

Autor und Sprecher: Frank Schumann
Thema: Einführung in die Differenzialrechnung
Gesamt-Playlist zum Thema: Einführung in die Differenzialrechnung (Weiterleitung zu YouTube)

Was Sie hier lernen können:

  • wie man in GeoGebra den Graphen einer Ableitungsfunktion skizzieren kann.

Im Lernvideo wird gezeigt, wie man in GeoGebra einen Funktionsgraphen graphisch ableitet. Es wird die Lageveränderung der Tangente t an der Stelle x_A näher untersucht.

Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. Das Arbeitsblatt kann hier herunter geladen werden:


Gesamtlaufzeit des Videos: 09:00 Minuten.
© Frank Schumann 2014

Lernvideo: Gleichung der Tangente in x_0

Autor und Sprecher: Frank Schumann
Thema: Einführung in die Differenzialrechnung
Gesamt-Playlist zum Thema: Einführung in die Differenzialrechnung (Weiterleitung zu YouTube)

Was Sie hier lernen können:

  • wie man eine Gleichung für eine Tangente an der Stelle x_0 bestimmen kann.

Im Lernvideo wird die allgemeine Gleichung einer Tangente t zu einer differenzierbaren Funktion f an der Stelle x_0 hergeleitet. Ein Rechenbeispiel verdeutlicht die Anwendung dieser allgemeinen Tangentengleichung.

Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. Das Arbeitsblatt kann hier herunter geladen werden:


Gesamtlaufzeit des Videos: 08:45 Minuten.
© Frank Schumann 2014

Lernvideo: Ableitung einer Funktion an der Stelle x₀

Autor und Sprecher: Frank Schumann
Thema: Einführung in die Differenzialrechnung
Gesamt-Playlist zum Thema: Einführung in die Differenzialrechnung (Weiterleitung zu YouTube)

Was Sie hier lernen können:

  • wie man einen Differenzenquotienten an der Stelle x₀ aufstellt und für eine nachfolgende Grenzwertbetrachtung für h gegen null umformt
  • wie man aus dem Differenzenquotienten eine Vermutung für die Ableitung einer Funktion an der Stelle x₀ gewinnen kann.

Im Lernvideo werden Übungen am Differenzenquotienten zur Berechnung der Ableitung f Strich von x₀ exemplarisch angeleitet.

Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. Das Arbeitsblatt kann hier herunter geladen werden:


Gesamtlaufzeit des Videos: 13:21 Minuten.
© Frank Schumann 2014

Lernvideo: Das Tangentenproblem

Autor und Sprecher: Frank Schumann
Thema: Einführung in die Differenzialrechnung
Gesamt-Playlist zum Thema: Einführung in die Differenzialrechnung (Weiterleitung zu YouTube)

Was Du hier lernen kannst:

  • die Idee des Linearisierens einer Funktion an einer Stelle aus dem Definitionsbereich der Funktion,
  • Grenzübergang für den Differenzenquotienten für h gegen null,
  • was man unter der Ableitung einer Funktion an einer Stelle aus dem Definitionsbereich versteht,
  • was man unter der Tangente einer Funktion an einer Stelle aus dem Definitionsbereich versteht.

Im Lernvideo wird der Begriff der lokalen Steigung einer Funktion, die sich an der Stelle x null unter dem „Graphen-Mikroskop“ linearisieren lässt, durch verschiedene Simulationsexperimente in GeoGebra induktiv erarbeitet. Das Tangentenproblem entwickelt sich aus dem Verschwinden der Sekante für h gegen null (numerische Division durch null!). Es folgt eine Definition für die Ableitung f Strich von x null in einer für Lernende der Klassenstufe 10 angemessenen Fachsprache. Eine exakte Definition für den Grenzübergang des Differenzenquotienten für h gegen null ist auf Grund der eingeschränkten Begriffsbildung didaktisch nicht angebracht.

Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. Die Arbeitsblätter können hier herunter geladen werden:



Gesamtlaufzeit des Videos: 21:46 Minuten.
© Frank Schumann 2014