Lernvideo: Beobachtungen unter dem Graphen-Mikroskop

Autor und Sprecher: Frank Schumann
Thema: Einführung in die Differenzialrechnung
Gesamt-Playlist zum Thema: Einführung in die Differenzialrechnung (Weiterleitung zu YouTube)

Was Du hier lernen kannst:

  • das Beobachten veränderlicher und konstanter Parameter
  • das Beschreiben eigener Beobachtungen
  • Eigenschaften von Funktionen und ihren Graphen unter einem „Mikroskop“.

Im Lernvideo (ohne Ton) werden an der Funktion f mit f(x) = 0.1*x² zwei Simulationsexperimente in GeoGebra demonstriert, die das „Erforschen“ zur Linearisierung differenzierbarer Funktionen anschaulich motivieren sollen.

Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. Das Arbeitsblatt kann hier herunter geladen werden:


Gesamtlaufzeit des Videos: 05:05 Minuten.
© Frank Schumann 2014

Lernvideo: Differenzenquotient und spezielle quadratische Funktion

Autor und Sprecher: Frank Schumann
Thema: Einführung in die Differenzialrechnung
Gesamt-Playlist zum Thema: Einführung in die Differenzialrechnung (Weiterleitung zu YouTube)

Was Du hier lernen kannst:

  • einen Satz über den Differenzenquotienten bezogen auf eine spezielle quadratische Funktion f mit f(x)=x^2 im Intervall [x_0,x_0+h]
  • wie man diesen Satz beweisen kann.

Im Lernvideo wird der Differenzenquotient auf eine spezielle quadratische Funktion f angewendet und analytisch durch den Term: 2*x0 + h beschrieben. Es wird ein Satz formuliert. Es folgt eine Übung zur Tätigkeit: Beweisen.

Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. Das Arbeitsblatt kann hier herunter geladen werden:


Gesamtlaufzeit des Videos: 07:12 Minuten.
© Frank Schumann 2014

Lernvideo: Differenzenquotient und lineare Funktionen

Autor und Sprecher: Frank Schumann
Thema: Einführung in die Differenzialrechnung
Gesamt-Playlist zum Thema: Einführung in die Differenzialrechnung (Weiterleitung zu YouTube)

Was Du hier lernen kannst:

  • einen Satz über den Differenzenquotienten bezogen auf alle linearen Funktionen mit f(x)=m*x+n im Intervall [x_0,x_0+h]
  • wie man diesen Satz beweisen kann.

Im Lernvideo wird der Differenzenquotient auf lineare Funktionen angewendet und analytisch durch die Steigungszahl m aus f(x)=m*x+n beschrieben. Es wird ein Satz formuliert und bewiesen.

Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. Das Arbeitsblatt kann hier herunter geladen werden:


Gesamtlaufzeit des Videos: 09:22 Minuten.
© Frank Schumann 2014