Lernvideo: Lagebeziehung von Geraden im Anschauungsraum

Autor und Sprecher: Frank Schumann
Thema: Punkte | Vektoren | Geraden
Gesamt-Playlist zum Thema: Punkte | Vektoren | Geraden (Weiterleitung zu YouTube)

Was Sie hier lernen können:

  • wie man einen Schnittpunkt von zwei sich schneidenden Geraden berechnen kann
  • wie man Parallelität von Geraden im Anschauungsraum nachweisen kann
  • wie man rechnerisch zeigen kann, dass zwei Geraden im Anschauungsraum windschief zueinander sind.

Im Lernvideo werden Geraden im Anschauungsraum betrachtet, um ihre Lagebeziehung zu untersuchen. Dabei werden rechnerische Lösungsverfahren vorgestellt.

Gesamtlaufzeit des Videos: 14:10 Minuten.
© Frank Schumann 2015

Social-Media-Buttons:

Lernvideo: Geradengleichung in Parameterform

Autor und Sprecher: Frank Schumann
Thema: Punkte | Vektoren | Geraden
Gesamt-Playlist zum Thema: Punkte | Vektoren | Geraden (Weiterleitung zu YouTube)

Was Sie hier lernen können:

  • wie man eine Gerade in der Ebene bzw. im Anschauungsraum durch eine vektorielle Gleichung und einen skalaren Parameter beschreiben kann
  • was man unter einem Stützvektor und einem Richtungsvektor einer Geraden versteht.

Im Lernvideo wird zu Beginn an einem Beispiel wiederholt, wie man eine Gleichung für eine Gerade, die in einem ebenen rechtwinkligen Koordinatensystem liegt, mittels Steigung m und Ordinatenabschnitt n bestimmt. Das bekannte Konzept versagt, wenn die Gerade sich in einem räumlichen Koordinatensystem befindet.
Es werden die Begriffe Stützvektor und Richtungsvektor einer Geraden eingeführt. Mittels einer Linearkombination aus Stützvektor und Richtungsvektor wird eine vektorielle Gleichung entwickelt, die einen skalaren Parameter enthält. Es entsteht eine Parameterform für eine Gerade in der Ebene oder im Anschauungsraum.

Gesamtlaufzeit des Videos: 08:14 Minuten.
© Frank Schumann 2015

Social-Media-Buttons:

Lernvideo: Punkte im Raum (3D)

Autor und Sprecher: Frank Schumann
Thema: Punkte | Vektoren | Geraden
Gesamt-Playlist zum Thema: Punkte | Vektoren | Geraden (Weiterleitung zu YouTube)

Was Sie hier lernen können:

  • wie man einen Punkt mit zwei Koordinaten in einem rechtwinkligen Koordinatensystem zeichnen kann (Wiederholung)
  • wie man einen Punkt mit drei Koordinaten in einem rechtwinkligen Koordinatensystem zeichnen kann
  • wie man den Abstand eines Punktes P zum Ursprung 0 eines rechtwinkligen Koordinatensystems rechnerisch bestimmen kann.

Im Lernvideo wird die Lage eines Raumpunktes P in einem x-y-z-Koordinatensystem beschrieben. Zusätzlich zu den Erläuterungen im Lehrbuch zum Zeichnen von Punkten mit drei Koordinaten auf Papier unterstützt dieses Video die 3D-Darstellung von Punkten und Strecken im Raum durch verschiedenartige Perspektivwechsel in GeoGebra. Es folgen Hinweise zur Lösung der Frage: Wie bestimmt man den Abstand eines Raumpunktes P zum Ursprung O des x-y-z-Koordinatensystems?

Hierzu wird von mir die Mathematiksoftware Geogebra ab Version 5 genutzt. Das Arbeitsblatt kann hier herunter geladen werden:


Gesamtlaufzeit des Videos: 11:39 Minuten.
© Frank Schumann 2014

Social-Media-Buttons:

Lernvideo: Beobachtungen unter dem Graphen-Mikroskop

Autor und Sprecher: Frank Schumann
Thema: Einführung in die Differenzialrechnung
Gesamt-Playlist zum Thema: Einführung in die Differenzialrechnung (Weiterleitung zu YouTube)

Was Du hier lernen kannst:

  • das Beobachten veränderlicher und konstanter Parameter
  • das Beschreiben eigener Beobachtungen
  • Eigenschaften von Funktionen und ihren Graphen unter einem „Mikroskop“.

Im Lernvideo (ohne Ton) werden an der Funktion f mit f(x) = 0.1*x² zwei Simulationsexperimente in GeoGebra demonstriert, die das „Erforschen“ zur Linearisierung differenzierbarer Funktionen anschaulich motivieren sollen.

Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. Das Arbeitsblatt kann hier herunter geladen werden:


Gesamtlaufzeit des Videos: 05:05 Minuten.
© Frank Schumann 2014

Social-Media-Buttons:

Lernvideo: Satz über die Innenwinkelsumme im Dreieck (Viereck)

Autor und Sprecher: Frank Schumann
Thema: Planimetrie
Gesamt-Playlist zum Thema: Planimetrie (Weiterleitung zu YouTube)

Im Lernvideo wird der Satz über die Innenwinkelsumme im Dreieck formuliert. Der Beweis wird in einem GeoGebra-Arbeitsblatt illustriert und angeleitet. Zu diesem Lernvideo gibt es ein Handout mit Lückentext (pdf-Datei, docx-Datei). In einem weiteren GeoGebra-Arbeitsblatt wird der Satz über die Innenwinkelsumme im Viereck motiviert.

Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. Die Arbeitsblätter können hier herunter geladen werden:

Das Handout kann hier heruntergeladen werden:


Gesamtlaufzeit des Videos: 08:23 Minuten.
© Frank Schumann 2014

Social-Media-Buttons:

Lernvideo: Kreistangente

Autor und Sprecher: Frank Schumann
Themen: Kreisberechnungen und Körperberechnungen, Planimetrie
Gesamt-Playlists zu den Themen: Kreisberechnungen und Körperberechnungen (Weiterleitung zu YouTube), Planimetrie (Weiterleitung zu YouTube)

Im Lernvideo geht es im Wesentlichen um Kreistangenten. Die Begriffe Passante, Sekante, Kreistangente und Zentrale werden zu Beginn des Lernvideo definiert.
Es werden die drei Fragen beantwortet und begründet:

  1. Was ist eine Kreistangente?
  2. Wie konstruiert man mit Z&L eine Kreistangente in einem Berührpunkt?
  3. Wie konstruiert man mit Z&L eine Kreistangente von einem Punkt P, der außerhalb eines Kreises liegt?

Am Ende des Lernvideos werden drei Sätze über Kreistangenten formuliert, die im Wesentlichen auf Symmetrieeigenschaften beruhen.

Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. Die Arbeitsblätter können hier herunter geladen werden:


Gesamtlaufzeit des Videos: 15:53 Minuten.
© Frank Schumann 2014

Social-Media-Buttons:

Lernvideo: Winkel verschieben und drehen

Autor und Sprecher: Frank Schumann
Thema: Planimetrie
Gesamt-Playlist zum Thema: Planimetrie (Weiterleitung zu YouTube)

Im Lernvideo werden Nebenwinkel, Scheitelwinkel, Stufenwinkel und Wechselwinkel exemplarisch eingeführt. Beziehungen von Stufenwinkel bzw. Wechselwinkel werden an parallelen Geraden untersucht und entsprechende Sätze formuliert. Auch eine Umkehrung zum Stufen- und Wechselwinkelsatz wird genannt.

Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. Die Arbeitsblätter können hier herunter geladen werden:


Gesamtlaufzeit des Videos: 16:41 Minuten.
© Frank Schumann 2014

Social-Media-Buttons: