Lernvideo: Proportionalität von Masse und Volumen eines Körpers

Autor und Sprecher: Frank Schumann
Thema: Lineare und quadratische Funktionen
Gesamt-Playlist zum Thema: Lineare und quadratische Funktionen (Weiterleitung zu YouTube)

Was Du hier lernen kannst:

  • Wie man aus einem Proportionalitätsfaktor die passende Funktionsgleichung aufstellt
  • Wie man proportionale Funktionen bei der Beantwortung naturwissenschaftlicher Prüffragen nutzen kann.

Im Lernvideo wird eine Aufgabe aus dem Anfangsunterricht Physik besprochen. Es geht dabei um den proportionalen Zusammenhang zwischen Masse und Volumen eines Körpers (homogene Masseverteilung sei vorausgesetzt). Es wird einerseits eine Prüffrage gestellt: Ob ein gemessener Körper aus Aluminium besteht oder nicht und zum anderen um die Erzeugung von Wertepaaren deren Punkte auf dem Graphen einer proportionalen Funktion und somit Körper aus Aluminium repräsentieren. Dabei wird der Aufbau der Funktionsgleichung einer proportionalen Funktion allgemein formal beschrieben.

Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. Das Arbeitsblatt kann hier herunter geladen werden:


Gesamtlaufzeit des Videos: 09:03 Minuten.
© Frank Schumann 2014

Social-Media-Buttons:

Lernvideo: Abhängigkeiten beschreiben mittels Proportionalitätsfaktor

Autor und Sprecher: Frank Schumann
Thema: Abhängigkeiten beschreiben
Gesamt-Playlist zum Thema: Abhängigkeiten beschreiben (Weiterleitung zu YouTube)

Die Bedeutung des Proportionalitätsfaktors wird im Lernvideo am Beispiel der Zuordnung aus Quaderhöhe in Volumen umfassend erläutert. Dabei spielen die Gleichung der Ursprungsgerade und das Steigungsdreieck eine wesentliche Rolle. Ebenso wird erläutert, dass die Abhängigkeit einer Grösse nur durch Verändern einer anderen Grösse demonstriert werden kann. Alle anderen unabhängigen Grössen müssen bei einer Animation konstant gehalten werden.

Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. Das Arbeitsblatt kann hier herunter geladen werden:


Gesamtlaufzeit des Videos: 12:18 Minuten.
© Frank Schumann 2014

Social-Media-Buttons: