Lernvideo: Äquivalente Terme und Rechengesetze

Autor und Sprecher: Frank Schumann
Thema: Terme | Gleichungen | Ungleichungen
Gesamt-Playlist zum Thema: Terme | Gleichungen | Ungleichungen (Weiterleitung zu YouTube)

Im Video wird das Umformen von Termen exemplarisch im CAS von Geogebra eingeführt und auf die Rechengesetze: Kommutativgesetz, Assoziativgesetz und Distributivgesetz der Addition (Multiplikation) rationaler Zahlen zurückgeführt. Zwei Geogebradateien motivieren das Üben zum Umformen von Termen.

Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. Die Arbeitsblätter können hier herunter geladen werden:


Gesamtlaufzeit des Videos: 16:40 Minuten.
© Frank Schumann 2014

Lernvideo: Term und Termwert

Autor und Sprecher: Frank Schumann
Thema: Terme | Gleichungen | Ungleichungen
Gesamt-Playlist zum Thema: Terme | Gleichungen | Ungleichungen (Weiterleitung zu YouTube)

Die Begriffe Term und Termwert werden in diesem Video exemplarisch eingeführt. Durch Anwendungen in Geogebra werden diese Begriffe abgegrenzt und verstärkt.

Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. Die Arbeitsblätter können hier herunter geladen werden:


Gesamtlaufzeit des Videos: 16:17 Minuten.
© Frank Schumann 2014

Symbolisches und approximatives Lösen von Gleichungen, Teil 1 – Eine harte Nuss von Gleichung

Autor: Frank Schumann,
Herausgeber: Jens K. Carl

Reihe: In Mathe einfach besser …
Wir sind zu Gast in einer Privatstunde im Fach Mathematik, Klassenstufe 11. Anwesende sind Herr Rainer Müller-Herbst, Lehrer für Mathematik und Physik und der Schüler Kai Sperling. Herr Rainer Müller-Herbst wird im laufenden Text abgekürzt mit RMH und Schüler Kai Sperling mit Kai. Herr RMH wiederholt mit Kai das Thema „Lösungsmengen von Gleichungen“.
In Teil 2 kannst du einen einfachen Algorithmus kennen lernen, mit dessen Hilfe man Näherungslösungen sehr genau bestimmen kann.

Teil 1:

  • Eine harte Nuss von Gleichung

Artikel kostenfrei zum Herunterladen:

Zeitschrift: In Mathe einfach besser… Nr. 2/2005 Seiten 2-10.
Verlag: Schumanns Verlagshaus Wertheim 2005.

© Frank Schumann 2006 (vormals Schumanns Verlagshaus Wertheim)