Lernvideo: Das Tangentenproblem

Autor und Sprecher: Frank Schumann
Thema: Einführung in die Differenzialrechnung
Gesamt-Playlist zum Thema: Einführung in die Differenzialrechnung (Weiterleitung zu YouTube)

Was Du hier lernen kannst:

  • die Idee des Linearisierens einer Funktion an einer Stelle aus dem Definitionsbereich der Funktion,
  • Grenzübergang für den Differenzenquotienten für h gegen null,
  • was man unter der Ableitung einer Funktion an einer Stelle aus dem Definitionsbereich versteht,
  • was man unter der Tangente einer Funktion an einer Stelle aus dem Definitionsbereich versteht.

Im Lernvideo wird der Begriff der lokalen Steigung einer Funktion, die sich an der Stelle x null unter dem „Graphen-Mikroskop“ linearisieren lässt, durch verschiedene Simulationsexperimente in GeoGebra induktiv erarbeitet. Das Tangentenproblem entwickelt sich aus dem Verschwinden der Sekante für h gegen null (numerische Division durch null!). Es folgt eine Definition für die Ableitung f Strich von x null in einer für Lernende der Klassenstufe 10 angemessenen Fachsprache. Eine exakte Definition für den Grenzübergang des Differenzenquotienten für h gegen null ist auf Grund der eingeschränkten Begriffsbildung didaktisch nicht angebracht.

Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. Die Arbeitsblätter können hier herunter geladen werden:



Gesamtlaufzeit des Videos: 21:46 Minuten.
© Frank Schumann 2014

Social-Media-Buttons:

Lernvideo: Steigung einer Geraden

Autor und Sprecher: Frank Schumann
Thema: Einführung in die Differenzialrechnung
Gesamt-Playlist zum Thema: Einführung in die Differenzialrechnung (Weiterleitung zu YouTube)

Was Du hier lernen kannst:

  • Berechnung der Steigung einer Geraden aus dem Steigungswinkel
  • Berechnung des Steigungswinkels einer Geraden aus der Steigung
  • Berechnung der Steigung einer Geraden aus den Koordinaten zweier Punkte

In diesem Lernvideo wird das Thema: „Steigung einer Geraden“ vielseitig besprochen. Auf unterschiedlichen Wegen werden entweder die Steigungszahl m oder der Steigungswinkel a einer Geraden g berechnet.

Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. Das Arbeitsblätter können hier herunter geladen werden:


Gesamtlaufzeit des Videos: 21:22 Minuten.
© Frank Schumann 2014

Social-Media-Buttons: