Applet: Von der Sekante zur Tangente

Autor: Frank Schumann
Thema: Beziehungen in geometrischen Figuren

Klicke auf das Bild, um das Applet zu starten. Bitte warte das endgültige Laden des Applets ab. Alle Fragezeichen müssen verschwunden sein.
Beziehungen in geometrischen Figuren - Von der Sekante zur Tangente
© 2016 Frank Schumann

Applet: Tangenten von außen konstruieren

Autor: Frank Schumann
Thema: Beziehungen in geometrischen Figuren

Klicke auf das Bild, um das Applet zu starten. Bitte warte das endgültige Laden des Applets ab. Alle Fragezeichen müssen verschwunden sein.
Beziehungen in geometrischen Figuren - Tangenten von außen konstruieren
© 2016 Frank Schumann

Applet: Tangente am Kreis konstruieren

Autor: Frank Schumann
Thema: Beziehungen in geometrischen Figuren

Klicke auf das Bild, um das Applet zu starten. Bitte warte das endgültige Laden des Applets ab. Alle Fragezeichen müssen verschwunden sein.
Beziehungen in geometrischen Figuren - Tangente am Kreis konstruieren
© 2016 Frank Schumann

Lernvideo: Gleichung der Tangente in x_0

Autor und Sprecher: Frank Schumann
Thema: Einführung in die Differenzialrechnung
Gesamt-Playlist zum Thema: Einführung in die Differenzialrechnung (Weiterleitung zu YouTube)

Was Sie hier lernen können:

  • wie man eine Gleichung für eine Tangente an der Stelle x_0 bestimmen kann.

Im Lernvideo wird die allgemeine Gleichung einer Tangente t zu einer differenzierbaren Funktion f an der Stelle x_0 hergeleitet. Ein Rechenbeispiel verdeutlicht die Anwendung dieser allgemeinen Tangentengleichung.

Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. Das Arbeitsblatt kann hier herunter geladen werden:


Gesamtlaufzeit des Videos: 08:45 Minuten.
© Frank Schumann 2014

Lernvideo: Ableitung einer Funktion an der Stelle x₀

Autor und Sprecher: Frank Schumann
Thema: Einführung in die Differenzialrechnung
Gesamt-Playlist zum Thema: Einführung in die Differenzialrechnung (Weiterleitung zu YouTube)

Was Sie hier lernen können:

  • wie man einen Differenzenquotienten an der Stelle x₀ aufstellt und für eine nachfolgende Grenzwertbetrachtung für h gegen null umformt
  • wie man aus dem Differenzenquotienten eine Vermutung für die Ableitung einer Funktion an der Stelle x₀ gewinnen kann.

Im Lernvideo werden Übungen am Differenzenquotienten zur Berechnung der Ableitung f Strich von x₀ exemplarisch angeleitet.

Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. Das Arbeitsblatt kann hier herunter geladen werden:


Gesamtlaufzeit des Videos: 13:21 Minuten.
© Frank Schumann 2014

Lernvideo: Das Tangentenproblem

Autor und Sprecher: Frank Schumann
Thema: Einführung in die Differenzialrechnung
Gesamt-Playlist zum Thema: Einführung in die Differenzialrechnung (Weiterleitung zu YouTube)

Was Du hier lernen kannst:

  • die Idee des Linearisierens einer Funktion an einer Stelle aus dem Definitionsbereich der Funktion,
  • Grenzübergang für den Differenzenquotienten für h gegen null,
  • was man unter der Ableitung einer Funktion an einer Stelle aus dem Definitionsbereich versteht,
  • was man unter der Tangente einer Funktion an einer Stelle aus dem Definitionsbereich versteht.

Im Lernvideo wird der Begriff der lokalen Steigung einer Funktion, die sich an der Stelle x null unter dem „Graphen-Mikroskop“ linearisieren lässt, durch verschiedene Simulationsexperimente in GeoGebra induktiv erarbeitet. Das Tangentenproblem entwickelt sich aus dem Verschwinden der Sekante für h gegen null (numerische Division durch null!). Es folgt eine Definition für die Ableitung f Strich von x null in einer für Lernende der Klassenstufe 10 angemessenen Fachsprache. Eine exakte Definition für den Grenzübergang des Differenzenquotienten für h gegen null ist auf Grund der eingeschränkten Begriffsbildung didaktisch nicht angebracht.

Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. Die Arbeitsblätter können hier herunter geladen werden:



Gesamtlaufzeit des Videos: 21:46 Minuten.
© Frank Schumann 2014

Lernvideo: Kreistangente

Autor und Sprecher: Frank Schumann
Themen: Kreisberechnungen und Körperberechnungen, Planimetrie
Gesamt-Playlists zu den Themen: Kreisberechnungen und Körperberechnungen (Weiterleitung zu YouTube), Planimetrie (Weiterleitung zu YouTube)

Im Lernvideo geht es im Wesentlichen um Kreistangenten. Die Begriffe Passante, Sekante, Kreistangente und Zentrale werden zu Beginn des Lernvideo definiert.
Es werden die drei Fragen beantwortet und begründet:

  1. Was ist eine Kreistangente?
  2. Wie konstruiert man mit Z&L eine Kreistangente in einem Berührpunkt?
  3. Wie konstruiert man mit Z&L eine Kreistangente von einem Punkt P, der außerhalb eines Kreises liegt?

Am Ende des Lernvideos werden drei Sätze über Kreistangenten formuliert, die im Wesentlichen auf Symmetrieeigenschaften beruhen.

Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. Die Arbeitsblätter können hier herunter geladen werden:


Gesamtlaufzeit des Videos: 15:53 Minuten.
© Frank Schumann 2014

Lernvideo: Kreiszahl π approximieren

Autor und Sprecher: Frank Schumann
Thema: Kreisberechnungen und Körperberechnungen
Gesamt-Playlists zum Thema: Kreisberechnungen und Körperberechnungen (Weiterleitung zu YouTube)

Im Lernvideo wird die Kreiszahl π approximiert. Zunächst wird die Lösungsidee für die Approximation geometrisch durch Dynamisierung regelmäßiger Polygone am Kreis veranschaulicht. Anschließend werden analytische Ausdrücke zur Berechnung von Polygonumfängen ermittelt und zur Approximation der Zahl π genutzt.

Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. Die Arbeitsblätter können hier herunter geladen werden:


Gesamtlaufzeit des Videos: 22:55 Minuten.
© Frank Schumann 2014

Kopiervorlage: Kreis und Gerade

Autor: Frank Schumann,
Herausgeber: Jens K. Carl

Kopiervorlage / Eine Grafisch-numerische Applikation (GNA) für den Voyage 200 und TI-89 Titanium von Texas Instruments.
11 Lernaufträge zum Thema Kreisberechnungen. Gefragt wird nach Lagebeziehungen, Sekante, Tangente, Passante, Schnittpunktbestimmung, Geraden-Ortsvektor, Tangentengleichung, Koordinatengleichung, Peripheriepunkt, Mittelpunkt des Kreises usw.

Kopiervorlage kostenfrei zum Herunterladen:

Veröffentlicht auf der Homepage des Verlages am 30.10.2004.
Verlag: Schumanns Verlagshaus Sangerhausen 2004.

© Frank Schumann 2006 (vormals Schumanns Verlagshaus Wertheim)