Lernvideo: Satz über die Innenwinkelsumme im Dreieck (Viereck)

Autor und Sprecher: Frank Schumann
Thema: Planimetrie
Gesamt-Playlist zum Thema: Planimetrie (Weiterleitung zu YouTube)

Im Lernvideo wird der Satz über die Innenwinkelsumme im Dreieck formuliert. Der Beweis wird in einem GeoGebra-Arbeitsblatt illustriert und angeleitet. Zu diesem Lernvideo gibt es ein Handout mit Lückentext (pdf-Datei, docx-Datei). In einem weiteren GeoGebra-Arbeitsblatt wird der Satz über die Innenwinkelsumme im Viereck motiviert.

Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. Die Arbeitsblätter können hier herunter geladen werden:

Das Handout kann hier heruntergeladen werden:


Gesamtlaufzeit des Videos: 08:23 Minuten.
© Frank Schumann 2014

Lernvideo: Kreisteile

Autor und Sprecher: Frank Schumann
Themen: Kreisberechnungen und Körperberechnungen, Planimetrie
Gesamt-Playlists zu den Themen: Kreisberechnungen und Körperberechnungen (Weiterleitung zu YouTube), Planimetrie (Weiterleitung zu YouTube)

Im Lernvideo werden in GeoGebra Abhängigkeiten von Größen beschrieben, um Gleichungen herzustellen, mit deren Hilfe man die Bogenlänge eines Kreisbogens bzw. den Flächeninhalt eines Kreissektors berechnen kann.

Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. Das Arbeitsblatt kann hier herunter geladen werden:


Gesamtlaufzeit des Videos: 09:50 Minuten.
© Frank Schumann 2014

Lernvideo: Winkelarten und Winkelweiten

Autor und Sprecher: Frank Schumann
Thema: Planimetrie
Gesamt-Playlist zum Thema: Planimetrie (Weiterleitung zu YouTube)

Zuerst werden die Winkelarten vorgstellt und dann wird gezeigt, wie man verschiedene Winkelweiten von 0° bis 360° mit Hilfe des Geodreiecks messen kann.

Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. Das Arbeitsblatt kann hier herunter geladen werden:


Gesamtlaufzeit des Videos: 11:05 Minuten.
© Frank Schumann 2013

Das Skalarprodukt und die Winkelberechnungen

Autor: Frank Schumann,
Herausgeber: Jens K. Carl

Reihe: In Mathe einfach besser …
Wir wissen: Die Prüfung, ob zwei Vektoren aufeinander senkrecht stehen oder nicht, kann mithilfe der Eigenschaft „skor“ für skalare Multiplikation geklärt werden. Gibt es eine Rechenvorschrift, die aus den Vektoren die Winkelgröße ermittelt?
Um diese Frage beantworten zu können, ergänzen wir die Skizze in zu einem Dreieck und wenden darauf den Kosinussatz der ebenen Trigonometrie an. …

Artikel kostenfrei zum Herunterladen:

Zeitschrift: In Mathe einfach besser… Nr. 2/2005 Seiten 7-12.
Verlag: Schumanns Verlagshaus Wertheim 2005.

© Frank Schumann 2005 (vormals Schumanns Verlagshaus Wertheim)